p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.47C23, C23.550C24, C22.2412- 1+4, C22.3252+ 1+4, (C2×C42).82C22, C23⋊Q8.17C2, (C22×C4).160C23, C23.Q8.21C2, C23.11D4.29C2, (C22×Q8).162C22, C23.83C23⋊68C2, C23.67C23⋊74C2, C23.78C23⋊31C2, C2.48(C22.32C24), C24.C22.44C2, C23.63C23⋊117C2, C2.C42.268C22, C2.47(C22.33C24), C2.57(C22.36C24), C2.32(C22.35C24), C2.102(C23.36C23), (C4×C4⋊C4)⋊112C2, (C2×C4).175(C4○D4), (C2×C4⋊C4).894C22, C22.422(C2×C4○D4), (C2×C22⋊C4).233C22, SmallGroup(128,1382)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.550C24
G = < a,b,c,d,e,f,g | a2=b2=c2=f2=1, d2=c, e2=a, g2=b, ab=ba, ac=ca, ede-1=ad=da, ae=ea, gfg-1=af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, dg=gd, eg=ge >
Subgroups: 372 in 193 conjugacy classes, 88 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C2×Q8, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C22×Q8, C4×C4⋊C4, C23.63C23, C24.C22, C23.67C23, C23⋊Q8, C23.78C23, C23.Q8, C23.11D4, C23.83C23, C23.550C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, 2- 1+4, C23.36C23, C22.32C24, C22.33C24, C22.35C24, C22.36C24, C23.550C24
(1 9)(2 10)(3 11)(4 12)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 62)(6 63)(7 64)(8 61)(9 23)(10 24)(11 21)(12 22)(13 27)(14 28)(15 25)(16 26)(17 31)(18 32)(19 29)(20 30)(33 39)(34 40)(35 37)(36 38)(41 55)(42 56)(43 53)(44 54)(45 59)(46 60)(47 57)(48 58)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 17 9 45)(2 46 10 18)(3 19 11 47)(4 48 12 20)(5 16 38 44)(6 41 39 13)(7 14 40 42)(8 43 37 15)(21 57 49 29)(22 30 50 58)(23 59 51 31)(24 32 52 60)(25 61 53 35)(26 36 54 62)(27 63 55 33)(28 34 56 64)
(2 52)(4 50)(5 34)(6 37)(7 36)(8 39)(10 24)(12 22)(13 41)(14 56)(15 43)(16 54)(17 19)(18 30)(20 32)(25 53)(26 44)(27 55)(28 42)(29 31)(33 61)(35 63)(38 64)(40 62)(45 47)(46 58)(48 60)(57 59)
(1 55 51 41)(2 56 52 42)(3 53 49 43)(4 54 50 44)(5 48 62 58)(6 45 63 59)(7 46 64 60)(8 47 61 57)(9 27 23 13)(10 28 24 14)(11 25 21 15)(12 26 22 16)(17 33 31 39)(18 34 32 40)(19 35 29 37)(20 36 30 38)
G:=sub<Sym(64)| (1,9)(2,10)(3,11)(4,12)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,39)(34,40)(35,37)(36,38)(41,55)(42,56)(43,53)(44,54)(45,59)(46,60)(47,57)(48,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,17,9,45)(2,46,10,18)(3,19,11,47)(4,48,12,20)(5,16,38,44)(6,41,39,13)(7,14,40,42)(8,43,37,15)(21,57,49,29)(22,30,50,58)(23,59,51,31)(24,32,52,60)(25,61,53,35)(26,36,54,62)(27,63,55,33)(28,34,56,64), (2,52)(4,50)(5,34)(6,37)(7,36)(8,39)(10,24)(12,22)(13,41)(14,56)(15,43)(16,54)(17,19)(18,30)(20,32)(25,53)(26,44)(27,55)(28,42)(29,31)(33,61)(35,63)(38,64)(40,62)(45,47)(46,58)(48,60)(57,59), (1,55,51,41)(2,56,52,42)(3,53,49,43)(4,54,50,44)(5,48,62,58)(6,45,63,59)(7,46,64,60)(8,47,61,57)(9,27,23,13)(10,28,24,14)(11,25,21,15)(12,26,22,16)(17,33,31,39)(18,34,32,40)(19,35,29,37)(20,36,30,38)>;
G:=Group( (1,9)(2,10)(3,11)(4,12)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,39)(34,40)(35,37)(36,38)(41,55)(42,56)(43,53)(44,54)(45,59)(46,60)(47,57)(48,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,17,9,45)(2,46,10,18)(3,19,11,47)(4,48,12,20)(5,16,38,44)(6,41,39,13)(7,14,40,42)(8,43,37,15)(21,57,49,29)(22,30,50,58)(23,59,51,31)(24,32,52,60)(25,61,53,35)(26,36,54,62)(27,63,55,33)(28,34,56,64), (2,52)(4,50)(5,34)(6,37)(7,36)(8,39)(10,24)(12,22)(13,41)(14,56)(15,43)(16,54)(17,19)(18,30)(20,32)(25,53)(26,44)(27,55)(28,42)(29,31)(33,61)(35,63)(38,64)(40,62)(45,47)(46,58)(48,60)(57,59), (1,55,51,41)(2,56,52,42)(3,53,49,43)(4,54,50,44)(5,48,62,58)(6,45,63,59)(7,46,64,60)(8,47,61,57)(9,27,23,13)(10,28,24,14)(11,25,21,15)(12,26,22,16)(17,33,31,39)(18,34,32,40)(19,35,29,37)(20,36,30,38) );
G=PermutationGroup([[(1,9),(2,10),(3,11),(4,12),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,62),(6,63),(7,64),(8,61),(9,23),(10,24),(11,21),(12,22),(13,27),(14,28),(15,25),(16,26),(17,31),(18,32),(19,29),(20,30),(33,39),(34,40),(35,37),(36,38),(41,55),(42,56),(43,53),(44,54),(45,59),(46,60),(47,57),(48,58)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,17,9,45),(2,46,10,18),(3,19,11,47),(4,48,12,20),(5,16,38,44),(6,41,39,13),(7,14,40,42),(8,43,37,15),(21,57,49,29),(22,30,50,58),(23,59,51,31),(24,32,52,60),(25,61,53,35),(26,36,54,62),(27,63,55,33),(28,34,56,64)], [(2,52),(4,50),(5,34),(6,37),(7,36),(8,39),(10,24),(12,22),(13,41),(14,56),(15,43),(16,54),(17,19),(18,30),(20,32),(25,53),(26,44),(27,55),(28,42),(29,31),(33,61),(35,63),(38,64),(40,62),(45,47),(46,58),(48,60),(57,59)], [(1,55,51,41),(2,56,52,42),(3,53,49,43),(4,54,50,44),(5,48,62,58),(6,45,63,59),(7,46,64,60),(8,47,61,57),(9,27,23,13),(10,28,24,14),(11,25,21,15),(12,26,22,16),(17,33,31,39),(18,34,32,40),(19,35,29,37),(20,36,30,38)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 4A | 4B | 4C | 4D | 4E | ··· | 4P | 4Q | ··· | 4W |
order | 1 | 2 | ··· | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | 2+ 1+4 | 2- 1+4 |
kernel | C23.550C24 | C4×C4⋊C4 | C23.63C23 | C24.C22 | C23.67C23 | C23⋊Q8 | C23.78C23 | C23.Q8 | C23.11D4 | C23.83C23 | C2×C4 | C22 | C22 |
# reps | 1 | 1 | 2 | 3 | 1 | 1 | 1 | 1 | 2 | 3 | 12 | 2 | 2 |
Matrix representation of C23.550C24 ►in GL8(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 3 | 2 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 |
0 | 0 | 0 | 0 | 3 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 2 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 3 | 1 |
G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,2,2,0,0,0,0,3,1,0,0,0,0,0,0,2,2,0,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,4,3,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,4,3,0,0,0,0,0,0,1,1] >;
C23.550C24 in GAP, Magma, Sage, TeX
C_2^3._{550}C_2^4
% in TeX
G:=Group("C2^3.550C2^4");
// GroupNames label
G:=SmallGroup(128,1382);
// by ID
G=gap.SmallGroup(128,1382);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,120,758,723,185,136]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=1,d^2=c,e^2=a,g^2=b,a*b=b*a,a*c=c*a,e*d*e^-1=a*d=d*a,a*e=e*a,g*f*g^-1=a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,d*g=g*d,e*g=g*e>;
// generators/relations